答案是3/4

分析不太好分析

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <iostream>
#include <vector>
#include <random>
#include <algorithm>
#include <cmath>

using namespace std;

// 计算两点间弧长(较短的那段)
double getArcLength(double a, double b) {
double diff = abs(a - b);
return min(diff, 1.0 - diff);
}

// 判断是否为钝角三角形
bool isObtuseTriangle(double x1, double x2, double x3) {
// 按顺序排列三个点
// vector<double> points = {x1, x2, x3};
vector<double> points;
points.push_back(x1);
points.push_back(x2);
points.push_back(x3);
sort(points.begin(), points.end());

// 计算三段弧长(顺时针方向的较短弧)
double arc1 = getArcLength(points[0], points[1]); // AB
double arc2 = getArcLength(points[1], points[2]); // BC
double arc3 = getArcLength(points[2], points[0]); // CA

// 计算对角的弧(不包含该顶点的弧)
double oppArc1 = arc2 + arc3; // 对角 BCA 的弧 BC + CA
double oppArc2 = arc1 + arc3; // 对角 BAC 的弧 AB + CA
double oppArc3 = arc1 + arc2; // 对角 ABC 的弧 AB + BC

// 只要有两段弧之和小于 0.5,就形成钝角三角形
return (oppArc1 < 0.5 || oppArc2 < 0.5 || oppArc3 < 0.5);
}

int main() {
// 设置随机数生成器
random_device rd;
mt19937 gen(rd());
uniform_real_distribution<> dis(0.0, 1.0);

int trials = 1000000; // 模拟次数
int obtuseCount = 0;

// 模拟过程
for (int i = 0; i < trials; i++) {
// 随机生成三个点
double x1 = dis(gen);
double x2 = dis(gen);
double x3 = dis(gen);

// 检查是否形成钝角三角形
if (isObtuseTriangle(x1, x2, x3)) {
obtuseCount++;
}
}

// 计算概率
double probability = static_cast<double>(obtuseCount) / trials;
cout << "模拟次数: " << trials << endl;
cout << "形成钝角三角形的次数: " << obtuseCount << endl;
cout << "概率: " << probability << endl;
cout << "理论值: 0.75" << endl;

return 0;
}